Последние жаркие скидки до 51% Успеть! × Скрыть

Используем рекомендательные технологии

Продуктовые рекомендации Mindbox

В чем польза рекомендаций для покупателей

Продуктовые рекомендации помогают среди миллионов товаров и услуг найти то, что нужно. К примеру, если вы просматривали джинсы, сайт предложит похожие модели на выбор. Если купили смартфон — подберет защитное стекло под вашу модель. Так покупки отнимают меньше времени и усилий.

«Продукт» здесь и дальше — это любой товар, услуга, аудиовизуальное произведение и т.д.

Как формируются рекомендации

  1. Собираем предпочтения клиентов

    Невозможно рекомендовать человеку товар, когда не знаешь о его предпочтениях. Или, по крайней мере, о предпочтениях других клиентов, похожих на него. Поэтому Mindbox использует данные о действиях покупателей, например:

    • просмотрах продуктов или категорий продуктов;

    • продуктах в «Избранном», корзине, листе ожидания или других списках;

    • составе и датах заказов;

    • взаимодействиях с коммуникациями. Это, например, открытие писем и переходы по ссылкам из рекламы.

    Также для более точных рекомендаций могут учитываться данные о самих покупателях, например о:

    • местонахождении, чтобы показывать рекомендации для конкретного региона, и часовом поясе, чтобы делать это вовремя;

    • поле или возрасте, чтобы предлагать подходящие продукты. Например, платья — женщинам, а фильмы 16+ — взрослым.

    Все эти данные поступают в Mindbox с сайта, из мобильного приложения, касс, рекламных кабинетов.

  2. Подбираем рекомендации на основе предпочтений

    Есть три подхода к формированию рекомендаций:

    Подбор похожих и сопутствующих продуктов. Алгоритмы анализируют свойства тех продуктов, которыми интересовался клиент: цвет, жанр, коллекцию, категорию или производителя. По этим признакам подбираются продукты, которые также могут его заинтересовать. Например, если покупатель искал на сайте зоомагазина собачий корм, в рекомендациях появятся товары для собак. Так клиент вспомнит, что нужно докупить шампунь для питомца. Хотя мог бы и не добраться до него, если бы просто листал витрину.

    Рекомендации популярных продуктов. Алгоритм анализирует взаимодействие всех клиентов с продуктами и может подсказать тот, у которого самый высокий спрос или лучшие оценки. Это полезно, если клиент впервые пришел на сайт и о нем еще ничего неизвестно. Mindbox порекомендует то, что нравится большинству других покупателей. Например, на сайте мебельного магазина рядом с самыми популярными моделями появится виджет «Хиты продаж».

    Рекомендации как для клиента с похожими предпочтениями. Алгоритм анализирует сходства в поведении клиентов. Если двум покупателям нравится одна и та же группа продуктов, их предпочтения похожи. Значит, первому можно рекомендовать то, что заинтересовало второго, и наоборот. Например, двум зрителям онлайн-кинотеатра нравятся вестерны и боевики. Один из них еще и фанат авторского кино — второму тоже можно порекомендовать этот жанр. Такой подход помогает выявлять неочевидные предпочтения и составлять более разносторонние рекомендации.

  3. Уточняем рекомендации

    После того, как рекомендации по предпочтениям составлены, можно сделать их еще точнее, добавив в Mindbox дополнительные условия. Например, показывать продукты только в географической зоне клиента. А также исключить из рекомендаций товары, которые покупают независимо от предпочтений — скажем, пакеты в супермаркетах.

Где отображаются рекомендации

Когда рекомендательные алгоритмы настроены и обучены, они могут показывать покупателю подборки продуктов в любой точке контакта: на сайте — при помощи виджета, в рассылках, мобильном приложении, колл-центре, на кассе.